Media
Self-organized hexagons in light transmitted by an ensemble of cold Rb atoms in presence of feedback by a plane mirror

First direct detection of gravitational waves!
An international team of scientists have today announced the first-ever detection of gravitational waves. The discovery confirms a major prediction of Albert Einstein’s 1915 general theory of relativity, and was made possible by British and German advances in technology.
“This is a monumental leap forward for physics and astrophysics – taking Einstein’s predictions and turning them into an entirely new way to sense some of the most fascinating objects in our Universe,” said Professor Sheila Rowan, Director of the University of Glasgow’s Institute for Gravitational Research, and a member of the discovery team.
The gravitational waves were detected on 14 September 2015 at 09:51 UK time by both LIGO (Laser Interferometer Gravitational-wave Observatory) detectors in Louisiana and Washington state in the US. They originated from two black holes, each around 30 times the mass of the Sun and located more than 1.3 billion light years from Earth, coalescing to form a single, even more massive black hole.
The image shows a numerical-relativistc simulation created by the SXS (Simulating eXtreme Spacetimes) project.
Concept of the grating chip Magneto-Optical Trap (MOT)

Magnetic structure of an unconventional superconductor material

A state-of-the-art electron beam lithography system

A custom-built cryostat

270° panorama of Glasgow 10m prototype lab

First fringes of the 1m in-air test Sagnac interferometer

Glasgow 10m interferometer
